

Pick the most future-ready processor for business

See how Snapdragon® X Series processors are changing the PC game.

The x86 architecture worked fine for PCs of the past. But the rise of Al-driven software and hybrid workflows has pushed x86 to its breaking point. Instead, modern work demands the powerful capabilities of Snapdragon processors.

	x86 architecture	Snapdragon
History	Legacy architecture released by Intel in 1978, licensed to AMD in 1982	Modern architecture released by Snapdragon in 2024
Chip architecture	Complex Instruction Set Computing (CISC) uses large, complex instructions to perform multiple tasks in a single clock cycle, often at the expense of power	Reduced Instruction Set Computing (RISC) uses fewer instructions and optimizes them to perform one task per clock cycle for faster and more efficient processing
Processor features	Historically optimized for maximum performance on desktops and servers	Delivers an exceptional balance of performance and efficiency—ideal for mobile devices
Unplugged performance	Cuts performance to as a little as 55% when unplugged ¹	Maintains max performance when unplugged —up to 90% faster than other processors ²
Energy efficiency	Generally consumes more power, which may require higher capacity for fans/cooling	System on a Chip (SoC) optimization keeps devices cool and quiet, ³ enabling multi-day battery life ⁴

Equip your workforce for what's next

x86 was built for a different time. Windows on Snapdragon is built for what's next, delivering the energy efficiency, unplugged power, and AI performance today's businesses demand.

Explore more Snapdragon advantages

See the benefits

© 2025 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved. Qualcomm and Snapdragon are trademarks or registered trademarks of Qualcomm Incorporated. Snapdragon is a

product of Qualcomm Technologies, Inc. and/or its subsidiaries.

1. CPU performance is based on Geekbench v6.2 Single-Core on Windows 11 OS run in October 2024, Snapdragon X Elite (XIE-80-100) was tested using a Dell XPS 13 (9345) on "Balanced" Power Manager, Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9350) on "Balanced" Power Mode in Windows and "Optimized" in Dell Power Manager. Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9350) on "Balanced" Power Mode in Windows and "Standard mode" in Windows and "Optimized" in Dell Power Manager. The AMD Ryzen AI 9 HX 370 was tested using an ASUS Vivobook S14 (M5406WA) on "Balanced" Power Mode in Windows and "Standard mode" in MyASUS. Power and performance comparison reflects results based on measurements and hardware instrumentation of given devices.

2. Performance is based on Cinebench Single Core run in Windows 11 in October 2024. Snapdragon X Elite (XIE-80-100) was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (

2 Performance is added of interbetical single-Core familial Windows in Interpetical String and Section 2 S

"Standard mode" in MyASUS. Power and performance comparison reflects results based on measurements and hardware instrumentation of given devices.

3 Performance & device temperature measured while running UL Procyon AI Computer Vision on the NPU In run in Windows 11 in October 2024. Snapdragon X Elite (XIE-80-100) was tested using a Dell XPS 13 (9345). The Intel Core Ultra 7 256V was tested using a Dell XPS 13 (9350). On battery performance measured on "Balanced" Power Mode in Windows and "Optimized" in Dell Power Manager for both devices. Power, thermal, performance comparison reflects results based on measurem 4 Battery life varies significantly with device, settings, usage, and other factors.